Toxoplasma gondii cyclic GMP-dependent kinase: chemotherapeutic targeting of an essential parasite protein kinase.

نویسندگان

  • Robert G K Donald
  • John Allocco
  • Suresh B Singh
  • Bakela Nare
  • Scott P Salowe
  • Judyann Wiltsie
  • Paul A Liberator
چکیده

The trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl]pyridine (compound 1) has in vivo activity against the apicomplexan parasites Toxoplasma gondii and Eimeria tenella in animal models. The presumptive molecular target of this compound in E. tenella is cyclic GMP-dependent protein kinase (PKG). Native PKG purified from T. gondii has kinetic and pharmacologic properties similar to those of the E. tenella homologue, and both have been functionally expressed as recombinant proteins in T. gondii. Computer modeling of parasite PKG was used to predict catalytic site amino acid residues that interact with compound 1. The recombinant laboratory-generated mutants T. gondii PKG T761Q or T761M and the analogous E. tenella T770 alleles have reduced binding affinity for, and are not inhibited by, compound 1. By all other criteria, PKG with this class of catalytic site substitution is indistinguishable from wild-type enzyme. A genetic disruption of T. gondii PKG can only be achieved if a complementing copy of PKG is provided in trans, arguing that PKG is an essential protein. Strains of T. gondii, disrupted at the genomic PKG locus and dependent upon the T. gondii T761-substituted PKGs, are as virulent as wild type in mice. However, unlike mice infected with wild-type T. gondii that are cured by compound 1, mice infected with the laboratory-generated strains of T. gondii do not respond to treatment. We conclude that PKG represents the primary molecular target responsible for the antiparasitic efficacy of compound 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AID-ing Signaling in Toxoplasma gondii

The cyclic GMP-dependent protein kinase (PKG) of apicomplexan parasites is essential for secretion of micronemes and host cell invasion and egress. Both kinase specificity and localization can determine which substrates are phosphorylated. The functions of plasma membrane and cytosolic PKG isoforms of Toxoplasma gondii were unknown because of difficulties precisely manipulating expression of es...

متن کامل

Plasma Membrane Association by N-Acylation Governs PKG Function in Toxoplasma gondii

Cyclic GMP (cGMP)-dependent protein kinase (protein kinase G [PKG]) is essential for microneme secretion, motility, invasion, and egress in apicomplexan parasites, However, the separate roles of two isoforms of the kinase that are expressed by some apicomplexans remain uncertain. Despite having identical regulatory and catalytic domains, PKGI is plasma membrane associated whereas PKGII is cytos...

متن کامل

cGMP-dependent protein kinase from Toxoplasma gondii: functional expression in E. coli and molecular characterization

Background The apicomplexan parasite Toxoplasma gondii is an obligate intracellular human pathogen causing toxoplasmosis predominantly in immune-compromised hosts such as cancer and transplant patients as well as patients with AIDS [1]. A specific cGMP-dependent protein kinase (TgPKG) which appears to be crucial for host invasion has been identified in T. gondii and related coccidial protozoa [...

متن کامل

Evaluation of a cyclic GMP-dependent protein kinase inhibitor in treatment of murine toxoplasmosis: gamma interferon is required for efficacy.

The trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl]pyridine (compound 1) is a potent inhibitor of cyclic GMP-dependent protein kinases from Apicomplexan protozoa and displays cytostatic activity against Toxoplasma gondii in vitro. Compound 1 has now been evaluated against T. gondii infections in the mouse and appeared to protect the animals when given in...

متن کامل

Using a Genetically Encoded Sensor to Identify Inhibitors of Toxoplasma gondii Ca2+ Signaling*

The life cycles of apicomplexan parasites progress in accordance with fluxes in cytosolic Ca(2+) Such fluxes are necessary for events like motility and egress from host cells. We used genetically encoded Ca(2+) indicators (GCaMPs) to develop a cell-based phenotypic screen for compounds that modulate Ca(2+) signaling in the model apicomplexan Toxoplasma gondii In doing so, we took advantage of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 1 3  شماره 

صفحات  -

تاریخ انتشار 2002